Interconversion of Nonracemic a-OTBS Crotyl and y-OTBS Methallyl **Tri-n-butylstannanes. Additions of the** (E) -Methallyl Isomer to Representative **Aldehydes**

James **A.** Marshall,* Jill **A.** Jablonowski, and L. Michelle Elliott

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208

Received March 7, 1995

In our evolving studies on the chemistry of nonracemic α - and y-oxygenated allylic stannanes as reagents for $S_{E}2'$ additions to aldehydes, we found improved *syn:anti* diastereoselectivity for OTBS *us* OMOM methallyl derivatives 3 and 4 (eq 1).¹

The y-oxygenated reagents **3** and **4** were readily prepared by a stereospecific *anti* 1,3-isomerization of the a-isomers 1 and **2** in the presence of catalysts such as BF_3 OEt₂, TBSOTf, Bu₃SnOTf, or even LiClO₄ in Et₂O.² In all cases examined, no more than traces of the *(E)* isomers of **3** or **4** were ever detected. It should be noted that prolonged exposure of these stannanes to Lewis acid catalysts led to complete decomposition without producing the (E) -isomer.

We subsequently prepared the (E) - γ -OTBS methallylstannane (R, S) -7, in racemic form, through conjugate addition of the Lipshutz higher order cyanocuprate Bu- $(Bu₃Sn)Cu(CN)Li₂³$ to crotonaldehyde and *in situ* trapping of the intermediate enolate with $TBSCl¹$. This stannane exhibited remarkably high *syn* diastereoselectivity in BF3-promoted additions to aldehydes. Particularly noteworthy is the nearly exclusive formation of *syn* adduct **5c** with 2-heptynal (eq 2). or Bistannane exhibited remarkably high *syn* diastereoselectivity in BF₃-promoted additions to aldehydes. Particu-
arly noteworthy is the nearly exclusive formation of *syn*
adduct 5c with 2-heptynal (eq 2).
 R
 R
 R

In a study aimed at finding other promoters or catalysts for these additions, we examined a number of

lanthanide triflates.⁴ Although these were not effective for the additions, we found that they catalyzed isomerization of the double bond in the γ -OTBS stannane (S) -**3.** They also catalyzed the conversion of α -OTBS stannane (S)-1 to a separable mixture of (Z)- and (E)- γ -OTBS isomers (S) -3 and (R) -7. Best results were obtained with $Yb(OTf)₃$, as summarized in eq 3.⁵

The stereochemistry of the isomerizations was elucidated by conversion of the previously unknown *(E)* isomer *(R)*-7 to the dihydro derivative *(R)*-9, $[\alpha]_D$ -12.5, as shown in eq 4. The enantiomer (S) -9, $[\alpha]_D$ 12.9, was prepared from tosylate 11.6 The ee of material obtained by both routes was found to be $>90\%$ by ¹⁹F NMR analysis of the Mosher ester derivative 10.

We next examined the addition of stannane *(R)-7* to representative aldehydes as summarized in eq 5. The *syn:anti* ratios of products were determined by GC analysis. Not surprisingly, these were identical to those previously found (eq 2) for the racemic stannane.

The ee of the *syn* adducts was obtained through **IH** NMR analysis of the Mosher esters. The ee of the **cyclohexanecarboxaldehyde** and 2-heptenal adducts *(R&-* **5a** and (R,R) -5b was comparable to that of the starting stannane *(R)-7,* as expected for a stereospecific reaction.

~ ~~ ~~

⁽¹⁾ Marshall, J. A.; Welmaker, G. S. *J. Org. Chem.* **1992,57, 7158. (2)** Henry, K. J., Jr.; Grieco, P. A.; Jagoe, C. T. *Tetrahedron Lett.* **1992,33, 1817.**

⁽³⁾ Lipshutz, B. H.; Ellsworth, E. L.; Dimock, S. H.; Reuter, D. C. *Tetrahedron Lett.* **1989, 30, 2065.**

⁽⁴⁾ For relevant examples, see: (a) Aspinall, H. C.; Browning, A. **F.;** Greeves, N.; Ravenscroft, P. *Tetrahedron Lett.* **1994,35, 4639.** (b) Hachiya, **I.;** Kobayashi, S. *J. Org. Chem.* **1993, 58, 6958.**

⁽⁵⁾ The isomerization could also be effected with Sc(OTf)₃, La(OTf)₃, and Bu3SnOTf, but the reactions were slower and recoveries were lower.

⁽⁶⁾ Tosylate **11** was prepared by reduction of (R)-ethyl-3-hydrox-ybutanoate (Aldrich Chemical Co.) with LiAlH4 followed by monoprotection with TBSCl, imidazole, and tosylation with p-TsC1 in pyridine.

The 2-heptynal adduct *(R,R)-5c,* however, was nearly racemic. This experiment was repeated several times with the same outcome. **A** control experiment in which excess stannane (R) -7 was employed showed that negligible racemization of the stannane occurred under the reaction conditions. The recovered **(R)-7** afforded alcohol **8** of the same ee as that of the starting sample according to analysis of the Mosher ester **10** by **19F** NMR (see eq **4).** We are thus led to the inescapable conclusion that addition of stannane **(R)-7** to 2-heptynal occurs with nearly equal facility by a *syn* and *anti* S_E2' pathway. Furthermore, the *syn* pathway does not involve a concerted cyclic transition state, as such a process would afford the *anti* adduct-which comprised only 3% of the total product.

In an application of this chemistry with potential for carbohydrate homologations, we prepared a *ca.* 1:l mixture of the chromatographically separable diastereomeric stannanes **14** and **15** (stannane configuration as yet unknown) through addition of the Lipschutz cuprate3 to the glucopyranose-derived enal 13.⁷ Addition of each diastereomer to 2-nonynal led to the identical major adduct 16 (eq 6).⁸

The stereochemistry of the TBS derivative **17** of adduct **16** was ascertained by the sequence depicted in eq **7** and comparison of the degradation product **18** with an authentic sample prepared from 2-nonynal **(12d)** and stannane (R) -3.¹

Stannanes **14** and **15,** unlike **(R)-7,** are stereochemically biased. Evidently this bias helps to override the intrinsic preference for anti S_E2' addition normally exhibited by trialkylated allylic stannanes.⁹ In contrast to their reaction with 2-nonynal, stannanes **14** and **15** afford diastereomeric products, of as yet undetermined stereochemistry, with enal **21.1°** Each of the two products shows similar but clearly different spectral properties.

To our knowledge, these are the first examples of Lewis acid promoted additions of Bu₃Sn allylic stannanes to aldehydes that proceed by an acyclic *syn* reaction pathway. **As** the analogous process is not observed with aldehydes **12a, 12b,** and **21,** it seems likely that the triple bond is somehow responsible for this unprecedented reaction outcome.

Acknowledgment. This work was supported by a grant from NIH, the National Institute of Allergy and Infectious Diseases (2ROl-AI31422).

Supplementary Material Available: Experimental procedures and NMR spectra for new compounds **(51** pages).

509504455

⁽⁷⁾ Jarosz, S.; Fraser-Reid, B. *J. Org. Chem.* **1989,** *54,* **4011.**

⁽⁸⁾ One of the diastereomeric stannanes **14/16** afforded only adduct **16** whereas the other gave adduct **16** as the major product along with lesser amounts of inseparable stereoisomers of **16.**

⁽⁹⁾Cfi Yamamoto, Y.; Shida, N. Advances in Detailed Reaction Mechanisms; **JAI** Press, Inc.: Greenwich, CT, **1994;** Vol. **3, pp 1-44. (10)** Veysoglu, T.; Mitscher, L. **A.;** Swayze, J. K. Synthesis **1980,807.**